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Early Myocardial Infarction Detection over
Multi-view Echocardiography

Aysen Degerli, Serkan Kiranyaz, Tahir Hamid, Rashid Mazhar, and Moncef Gabbouj

Abstract—Myocardial infarction (MI) is the leading cause of
mortality in the world that occurs due to a blockage of the
coronary arteries feeding the myocardium. An early diagnosis
of MI and its localization can mitigate the extent of myocardial
damage by facilitating early therapeutic interventions. Following
the blockage of a coronary artery, the regional wall motion
abnormality (RWMA) of the ischemic myocardial segments is the
earliest change to set in. Echocardiography is the fundamental
tool to assess any RWMA. Assessing the motion of the left
ventricle (LV) wall only from a single echocardiography view
may lead to missing the diagnosis of MI as the RWMA may
not be visible on that specific view. Therefore, in this study,
we propose to fuse apical 4-chamber (A4C) and apical 2-
chamber (A2C) views in which a total of 12 myocardial segments
can be analyzed for MI detection. The proposed method first
estimates the motion of the LV wall by Active Polynomials
(APs), which extract and track the endocardial boundary to
compute myocardial segment displacements. The features are
extracted from the A4C and A2C view displacements, which are
concatenated and fed into the classifiers to detect MI. The main
contributions of this study are 1) creation of a new benchmark
dataset by including both A4C and A2C views in a total of
260 echocardiography recordings, which is publicly shared with
the research community, 2) improving the performance of the
prior work of threshold-based APs by a Machine Learning
based approach, and 3) a pioneer MI detection approach via
multi-view echocardiography by fusing the information of A4C
and A2C views. Experimental results show that the proposed
method achieves 90.91% sensitivity and 86.36% precision for
MI detection over multi-view echocardiography.

Index Terms—Active Polynomials, Echocardiography, Machine
Learning, Motion Estimation, Myocardial Infarction.

I. INTRODUCTION

MYOCARDIAL infarction (MI) is caused by the death
of myocardial cells subsequent to ischemia due to the

blockage of coronary arteries. Presentation of MI is gener-
ally evident with shortness of breath, pain around the chest,
shoulders, back, and arms [1]. However, these symptoms may
not occur in the early stages of MI. Due to the blockage of
the coronary artery and deprivation of blood supply, there is
progressive damage to the affected part of the myocardium.
Hence, it is critical to make an early detection of MI, to limit
and prevent death & disability. Currently, the diagnosis of MI
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is based upon a time-consuming method of serial observations
of electrocardiography (ECG), blood level of cardiac enzymes,
and imaging techniques [2]. At the outset of MI, ECG is an
insensitive tool with 0.77 predictive value in ruling out MI
[3]. Moreover, human error leads to misdiagnosis of ischemic
ECG changes in 12− 16% cases of MI [4]–[6]. Furthermore,
cardiac biomarkers take time to evolve to a diagnostic level.
After the onset of MI, the high sensitive troponin (hs-cTn)
starts to rise in 3 hours and it needs a repeat sample at least
6 hours after onset of chest pain to quantify according to the
American Heart Association definition of MI [7]. Therefore,
the most convenient tool to diagnose and assess MI in its
early stages is echocardiography, which has easy accessibility,
low cost, and lowest risk compared to other cardiac imaging
options [8], [9].

Two-dimensional (2D) echocardiography was first intro-
duced in the late 1950s, which is a non-invasive ultrasound
imaging technique that monitors the heart in real-time [9],
[10]. The early detection of MI can be performed by evalu-
ating the regional wall motion abnormality (RWMA) in 2D
echocardiography, where the abnormalities caused by MI can
be detected as a region of weaker motion of the myocardium.
However, the assessment of RWMA is highly subjective and
variant among experts [11]. Moreover, the echocardiography
recordings are generally subject to a high level of noise with
low image quality, where the left ventricle (LV) wall is mostly
unrecognizable. Thus, visual assessment of the RWMA highly
depends on the expertise of the echocardiographist and the
quality of the echocardiography recordings. Therefore, in order
to achieve reliable MI detection, computer-aided diagnosis
techniques are developed to help cardiologists in the diagnosis.
Consequently, motion estimation algorithms are utilized to
assess and quantify the RWMA in echocardiography. Several
approaches that are popular for estimating myocardial motion
are optical flow methods, deformation imaging, and active
contours.

Gradient-based optical flow methods estimate the motion by
capturing the flow of pixels with constant intensity over time.
The optical flow can be described as the velocity distributions
of the bright pixel movements in the image that can be ap-
proximated by the partial derivatives with respect to spatial and
temporal coordinates. Several studies [12]–[15] have utilized
gradient-based optical flow methods by adding constraints to
regularize the myocardial motion in 2D echocardiography.
However, the ultrasound imaging is highly variant with the
angle and depth of the ultrasound beam, which results in many
artifacts, such as noise, shadowing, and dropouts on the image
that cause optical flow methods to fail at estimating large LV
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Fig. 1: The chambers of the heart in A2C and A4C view
echocardiography.

wall displacements [16], [17]. Moreover, the noisy nature of
echocardiography degrades the performance of the optical flow
algorithms.

Deformation imaging is widely used in echocardiography
to perform strain analysis of the myocardium [18]–[27]. The
strain is defined by the length of the LV wall that is measured
via the speckle tracking method, which is known also as
the region-based optical flow or block-matching method in
echocardiography. The speckle tracking method searches for
a similar block of pixels through consecutive frames in a
specified search window. The strain measurements refer to
deformation of the myocardium, e.g., if the velocity of the
LV wall segments is non-uniform, then the myocardium is
infarcted. Even though deformation imaging is a promising
method to detect MI, it suffers severely from the weakness of
the optical flow methods, which are not robust to the noisy
nature of echocardiography. Thus, there is a need for high-
quality echocardiography recordings with 50− 70 frames per
second (fps) in order to tackle the issues raised by the speckle
tracking in deformation imaging [28]. As a result, the clinical
usage of deformation imaging is limited.

The active contour (snake) is introduced by Kass et al. [29]
that evolves iteratively to minimize the energy curves to extract
the edges, lines, or boundaries in images. They are used in
studies [30]–[32] to extract and track the endocardial boundary
of the LV wall in echocardiography. However, the endocardial
boundary is often discontinuous in echocardiography due to
the high level of noise. These occlusions and indentations
on the LV wall cause snake to fail at extracting to the true
boundary [33].

A common and major drawback of all the prior studies in
this domain is that the proposed MI detection methods all rely
on single-view, mostly over the apical 4-chamber view. Only
certain segments can be analyzed on a single-view and this
brings an inevitable problem of missing the ongoing MI if
the RWMA is not present on those segments. In other words,
regardless of their accuracy, if the segment(s) that show the
abnormal motion is not visible on that particular echocardiog-
raphy view, they are bound to fail the MI detection. Therefore,
the major objective of this study is to diagnose MI on the LV
wall by using multi-view echocardiography, which includes

apical 4-chamber (A4C) and apical 2-chamber (A2C) views,
where all the chambers of the heart, and only left atrium and
LV are visible, respectively as it is depicted in Fig. 1.

In this study, in order to overcome the aforementioned
limitations of the motion estimation algorithms, we use the
Active Polynomials (APs) [34] that constrain the active con-
tours to achieve robust segmentation and tracking of the
endocardial boundary of the LV wall. In our previous study
[34], we proposed a single-view MI detection approach by
thresholding the maximum displacement of APs in A4C view
echocardiography. However, setting a fixed threshold is never
guaranteed to be optimal for decision-making. Moreover, in
the literature, many studies have also used single-view, high-
quality, or simulated echocardiographic data [30]. Therefore,
the reliability and performance of the previously proposed
methods may significantly vary, where the clinical data is
usually in low quality/resolution, and subject to a high level
of noise.

In order to improve robustness and generalization of MI
diagnosis, in this study, we propose a multi-view Machine
Learning (ML) approach over the maximum displacement fea-
tures as depicted in Fig. 2. As the pioneer MI diagnosis study
in the literature over multi-view echocardiography, we aim to
determine the best ML approach for this purpose. Therefore,
we perform an extensive set of comparative evaluations among
several ML methods including Decision Tree (DT), Random
Forest (RF), k-Nearest Neighbour (k-NN), Support Vector
Machine (SVM), and 1D-Convolutional Neural Networks (1D-
CNN). Moreover, in this study, APs are adapted for the
A2C view echocardiography for the first time. An extended
benchmark dataset, HMC-QU1 is created that includes 260
echocardiography recordings of 130 MI patients and healthy
subjects from A4C and A2C views. Finally, the HMC-QU
dataset [35] is publicly shared with the research community
as a benchmark dataset.

The rest of the article is organized as follows. In Section II,
we give the details of the proposed approach. In Section III-A,
we introduce the HMC-QU dataset, and in Section III-C we
report the experimental results. Finally, we conclude the paper
and suggest topics for future research in Section IV.

II. METHODOLOGY

In this section, the proposed approach will be described in
detail. As it is depicted in Fig. 2, in the first step, the endo-
cardial boundary of the LV wall is extracted by APs. Then,
the boundary is divided into myocardial segments from which
the displacement curves are generated. Lastly, the features are
extracted from the displacements of each myocardial segment,
which are then used as the input for the classifiers for MI
diagnosis.

A. Endocardial Boundary Extraction by Active Polynomials

Accurate extraction of the LV wall is crucial to obtain the
true motion of the myocardium. In order to overcome the limi-
tations of the active contours [29] in echocardiography, we use

1The benchmark HMC-QU dataset is publicly shared at the repository
https://www.kaggle.com/aysendegerli/hmcqu-dataset

https://www.kaggle.com/aysendegerli/hmcqu-dataset
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Fig. 2: The diagram of the proposed MI detection approach using multi-view echocardiography. The endocardial boundary
is first extracted by the APs method. Then, the defined myocardial segments are tracked through one-cardiac cycle to form
the displacement curves. The maximum displacements are generated from each segment to define the features that are then
concatenated and fed into the classifier to detect MI.

Active Polynomials [34] to extract the endocardial boundary
of the LV wall. Echocardiography is usually subjected to a
high level of noise, and during acquisition, some parts of the
chamber walls might be missing or out of view. APs provide a
robust and reliable segmentation and tracking of the LV wall,
where their formation is illustrated in Fig. 4. A brief summary
will be presented next and the details of the method can be
found in [34].

Fig. 3: The comparison of the original and constrained active
contours. In both A4C and A2C views, the constrained active
contours can extract the endocardial boundary more accurately.

In the first stage of the APs formation, the Ridge Polyno-
mials (RPs) are formed on the LV wall. In echocardiography,
the LV wall may partially be missing or invisible due to low
quality. Thus, in the evolvement process of the active contours,
the contour may escape from the chamber causing inaccurate
segmentation of the endocardial boundary. Therefore, the RPs
are first created to constrain the active contours as illustrated
in Fig. 3. In the second stage of the proposed method, we
initialize an active contour from inside the chamber. The initial
mask for the contour is located in the middle of the LV as
a mini-version of the current frame’s RPs. The aim is to
evolve an active contour to detect and extract the endocardial
boundary of the LV wall. A typical edge detector is expressed
as follows:

lim
z→∞

g(z) = 0, (1)

where g is a function with positive and decreasing values, z
is an image, and the edges of z are detected at the locations
where the gradient is zero. However, detecting the edges of
images with rough and discontinuous objects is challenging
with the gradient method since generally gradient is not
zero on that particular edges. Thus, Chan-Vese [36] active
contour method is utilized since its stopping criteria do not
depend on the gradient. Therefore, it is suitable especially for
echocardiography, where there are discontinuities (even though
it has been minimized by RPs) and rough edges on the LV
wall due to the high level of noise and acquisition. Once the
active contour has converged to the endocardial boundary, the
APs can then be formed over the evolved active contour. As
shown in Fig. 3, the active contour may be noisy with severe
discontinuities on the LV wall. In order to achieve a smooth



4

Fig. 4: The APs method for the endocardial boundary of the LV wall extraction consists of three stages: 1) the RPs on the
LV wall are formed in input echocardiography, 2) the active contour is evolved from inside of the LV and constrained by the
RPs, and 3) the APs are formed by fitting 4th−order polynomials on the evolved active contour.

endocardial boundary segmentation, the evolved active contour
is divided into two sections. The left part of the contour
corresponds to the active contour points from start to apex,
whereas the right part is from apex to end. After the division,
we compose 4th−order smooth polynomials each of which is
fitted to the equally distanced 9 points from both right and left
parts to form APs that are the final form of the endocardial
boundary. Thus, APs provide a robust and smooth endocardial
boundary for MI diagnosis.

B. Myocardial Segment Displacements

After extracting the endocardial boundary by APs in each
frame of the echocardiography recordings, the boundary is
tracked and its displacement is measured in one-cardiac cycle.
In the diagnosis, the LV wall is segmented into 17 myocardial
segments, which is the recommendation of the American
Heart Association Writing Group on Myocardial Segmentation
and Registration for Cardiac Imaging [37]. The myocardial
segments on the LV wall for both A4C and A2C views can be
seen in Fig. 5 with a total of 12 distinct myocardial segments.
It is recommended that segment−17 should be removed if
the wall motion or regional strain are analyzed using the
17−segment model [38]. Thus, in the analysis, we have

Fig. 5: The myocardial segments of A4C and A2C views
echocardiography based on the 17−segment model.

excluded segment−17 shown as the white myocardial segment
in the APs block in Fig. 4. Consequently, analyzing the motion
of the 12 myocardial segments in multi-view echocardiography
yields information regarding all the coronary arteries feeding
the heart muscle since they cover most of the heart area as
illustrated in Fig. 6. The myocardial segments are divided
based on the length of the APs that are formed at the end of
the endocardial boundary extraction process. The length of the
APs are considered individually as previously explained left
and right parts, where the length of the left part is represented
as L, whereas the right part’s length is R. Accordingly, in A2C
and A4C views, the length of apical myocardial segments are
R/7 and L/7, whereas other segments have 2R/7 and 2L/7

Fig. 6: The myocardial segment names and numbers are shown
for both A4C and A2C views echocardiography at the top row.
The bull eye’s plot of the 17−segment model is illustrated,
where each color-coded and numbered segment corresponds
to coronary arteries at the bottom row.
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Fig. 7: The displacement curves of A4C and A2C view echocardiography recordings of a patient, where the frames consist of
one-cardiac cycle from end-diastole to end-systole.

for right and left parts, respectively.
The displacement curves are plotted for each myocardial

segment in A2C and A4C views echocardiography. The dis-
placements are calculated over one-cardiac cycle echocardio-
graphy recordings, where the reference frame is at time t = 0.
At each time instance, the displacement is defined as follows:

Dsκ(t) =
1

N

N∑
i=1√

(xisκ(t = 0)− xisκ(t))2 + (yisκ(t = 0)− yisκ(t))2,
(2)

where Dsκ is the average displacement measure of the κ
numbered myocardial segment sκ at a time instant t, N is
the number of points equally taken on the myocardial segment,
i.e., N = 5 in our implementation, and (x, y) is the coordinate
of each point taken. Accordingly, at the reference frame, the
displacement measurement is equal to zero. It is expected that
the displacement measures of each segment would gradually
increase from end-diastole to middle of the cycle; on the other
hand, gradually decrease from middle of the cycle to end-
systole as illustrated in Fig. 7.

C. Feature Engineering
In the feature engineering stage, we extract information

from the displacement curves regarding MI. The RWMA is
correlated to infarction as the displacement measurement of a
myocardial segment. Accordingly, the larger the displacement
measure a myocardial segment has, the less the chance of
it being infarcted. Thus, the maximum displacement of each
myocardial segment is extracted as the features. However, a
myocardial segment displacement cannot directly be compared
since the displacements decrease gradually from valve to
apical cap due to the structure of the heart. Therefore, the
displacements of the myocardial segments are normalized
by dividing the maximum displacement of a segment with
the minimum interval between the segment and the other

segment at the opposite side. For example, the interval between
segment−3 and its opposite segment−6 is greater than the
interval between segment−14 and its opposite segment−16.
Thus, we bring each displacement to the same level for
a fair comparison. The interval measurement used in the
normalization is defined as follows:

I(sκ,sε)(t) =
1

N

N∑
i=1

|xisκ(t)−x
i
sε(t)|+ |y

i
sκ(t)−y

i
sε(t)|, (3)

where I(sκ,sε) is the averaged Manhattan distance of N = 5
number of equally taken points on the two opposite segments
sκ, sε at time t, and κ, ε are the segment numbers. Accord-
ingly, we form the features of each myocardial segment as
follows:

fsκ =
max(Dsκ)

min(I(sκ,sε))
, (4)

where f is the displacement feature of segment sκ that is
the maximum displacement divided by the minimum interval
between its opposite segment sε. For the displacement cal-
culation, we have used the Euclidean distance, whereas, for
the interval measurement, the Manhattan distance is utilized
to scale the features into [0, 1]. Consequently, in single-view
echocardiography, where we only use whether A4C or A2C
view echocardiography recording, we extract feature vectors
Φ1, Φ2 ∈ R6×1 in one-cardiac cycle, respectively defined as
follows:

Φ1 =


fs3
fs9
fs14
fs16
fs12
fs6

 , and Φ2 =


fs4
fs10
fs15
fs13
fs7
fs1

 , (5)

where s denotes the numbered myocardial segment features
as illustrated in Fig. 6 and calculated in Eq. (4). On the
other hand, in multi-view echocardiography, we concatenate
the feature vectors to form F =

[
Φ1

T Φ2
T] ∈ R1×12.
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D. MI Detection

The MI detection is performed via binary classification task,
where the extracted features are fed into several classifiers as
follows: Support Vector Machine (SVM), k-Nearest Neighbors
(k-NN), Decision Tree (DT), Random Forest (RF), and 1D-
Convolutional Neural Networks (1D-CNN). The training is
performed over K number of samples {f jtrain, L

j
train}Kj=1,

where f and L are the data and ground-truths, respectively.
Support Vector Machines. The binary classification task

via SVM is performed by separating the data with a hyperplane
[39]. The best-fitting hyperplane is determined by maximizing
the inter-class and minimizing the intra-class differences. In
order to impose non-linearity to SVM models, kernel-based
methods are used to construct non-linear features that map
the data into higher dimensions to perform an easier class
separation. Thus, the performance of classification can be
improved.

Decision Tree. The hierarchical structure of DT performs a
classification task by feeding the data to nodes that are divided
into branches for transferring the input to the most suitable
class label [40]. The tree is formed by selecting the nodes
as they are divided into branches, and whenever the stopping
criterion is satisfied, the final node is assigned to a class. DT
models are suitable for small datasets, and computationally
less expensive compared to other models used in this study.

Random Forest. As ensemble version of the DT, the RF
prevents the overfitting issue that occurs due to the tight-
fitting of the model to the training data. Overfitting causes
the generalization capability of the model to deteriorate.
Therefore, the RF model overcomes the overfitting issue by
constructing individual trees by minimizing their correlation
in the classification task. After the majority voting, the best
model is selected to be used for the task.

k-Nearest Neighbors. The k-NN method classifies data
by assigning a sample to the same class as its k-nearest
neighbours [41]. It is popular due to its robustness to noise
and the simplicity of the algorithm. Moreover, it requires a few
parameters to tune, which makes the cross-validation process
straightforward [42]. The performance of the k-NN method
improves as more data is used to train it. However, more
training data increases its computational cost and memory
consumption since k-NN stores the training data in order
to calculate the distance between samples to classify a test
sample.

1D-Convolutional Neural Networks. The most popular
ML method during the last decade is Convolutional Neural
Networks (CNNs) that are feed-forward models consisting
of input, output, and hidden layers [43]. Their difference to
Artificial Neural Networks is that convolution operations are
performed in the hidden layers. In one-dimensional signal
processing applications, 1D-CNNs are preferred due to their
feasibility to one-dimensional convolution operations and low
computational complexity compared to 2D-CNNs [43]. The
1D-CNN model proposed in this study maps the input feature,
F to the corresponding class label, L : L ←− Pϑ,χ(F). The
first block ϑ ∈ {bj , wj}Mj=1 consists of M = 2 number
of 1D-convolutional layers, Rectified Linear Unit (ReLU)

Fig. 8: The proposed 1D-CNN structure consists of two 1D-
convolutional (1D-Conv) and two max-pooling (MaxP.) layers.
The input, filter, and fully connected layer sizes are denoted
as A, B, and D, respectively.

activation function, and max-pooling layers by the size of 2,
respectively. The second block χ consists of a fully connected
layer, ReLU activation function, an output layer, and softmax
activation function, respectively. The filter and kernel sizes
of the convolutional layers are presented in Section III-B.
Accordingly, the block diagram of the proposed 1D-CNN is
illustrated in Fig. 8.

III. EXPERIMENTAL RESULTS

In this section, we detail the HMC-QU dataset and report the
experimental results for single-view and multi-view echocar-
diography.

A. HMC-QU Dataset

The cardiologists of Hamad Medical Corporation, and re-
searchers from Qatar University and Tampere University have
compiled the HMC-QU dataset that includes 2D echocardiog-
raphy recordings for MI detection. This benchmark dataset
has been approved for usage by the local ethics board of
the hospital in February 2019. The dataset consists of 260
recordings from A2C and A4C views of 130 subjects. The MI
term indicates any sign of RWMA, whereas subjects without
RMWA are labeled as non-MI in the dataset. The number of
myocardial segments with respect to ground-truth labels are
presented in Table I. The A4C view includes 80 MI and 50
non-MI recordings, whereas 68 MI and 62 non-MI recordings

TABLE I: The number of myocardial segments corresponds
to the ground-truth labels of the HMC-QU dataset.

Myocardial Segments MI Patients non-MI Subjects
Segment−1 29 101
Segment−3 26 104
Segment−4 29 101
Segment−6 16 114
Segment−7 40 90
Segment−9 46 84
Segment−10 31 99
Segment−12 28 102
Segment−13 47 83
Segment−14 64 66
Segment−15 53 77
Segment−16 53 77
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TABLE II: The number of patients with respect to their
corresponding ground-truth labels from A4C and A2C views.

Ground-truths # of PatientsA4C view A2C view
MI MI 60

non-MI non-MI 42
MI non-MI 20

non-MI MI 8

are from the A2C view. Accordingly, MI ratios are 61.54% and
52.3% in A4C and A2C views, respectively. The ratios differ
from each other since only 60 patients have their MI visible
in both views. Therefore, in multi-view echocardiography, the
ground-truth labels correspond to 88 MI patients and 42 non-
MI subjects, where the ground-truth labels are formed as MI
if any of the views depict RWMA, whereas non-MI if no
sign of RWMA is visible in both views. Thus, the overall MI
ratio is 67.69% in multi-view echocardiography. In Table II,
a detailed ground-truth label formation with respect to views
is presented.

In each echocardiography recording, the myocardial seg-
ments on the LV wall are categorized into five dif-
ferent stages: 1−normal or hyperkinesia, 2−hypokinesia,
3−akinesia, 4−dyskinesia, and 5−aneurysm as the severity of
MI ascends, respectively. In this study, we perform a binary
classification task to simplify the problem. Therefore, we have
downsized the ground-truth labels to 1−non-MI (normal), and
(2, 3, 4, 5)−MI. The ultrasound machines used for acquisition
are Phillips and GE Vivid from GE Healthcare (United States).
The spatial resolution of the echocardiography recordings
varies from 422 × 636 to 768 × 1024, and the temporal
resolution is 25 frames per second (fps).

B. Experimental Setup

The detection models are evaluated over the dataset in
a stratified 5-fold cross-validation scheme with a ratio of
80% training, and 20% test (unseen data) sets. The confusion
matrices are formed by the elements: true positive (TP ),
true negative (TN ), false positive (FP ), and false negative
(FN ). Thus, the standard performance metrics are calculated
as follows:

Sensitivity =
TP

TP + FN
, (6)

where the sensitivity (recall) is the ratio of correctly detected
MI patients to all MI patients in the dataset,

Specificity =
TN

TN + FP
, (7)

where the specificity is the ratio of correctly classified non-MI
subjects to all non-MI subjects in the dataset,

Precision =
TP

TP + FP
, (8)

where the precision refers to the number of correctly detected
MI patients over the total number of correctly detected samples

in the dataset,

Accuracy =
TP + TN

TP + TN + FP + FN
, (9)

where the accuracy is the ratio of correctly detected samples
in the dataset,

F (β) = (1 + β2)
Precision× Sensitivity

β2 × Precision+ Sensitivity
, (10)

where the F1−Score and F2−Score are calculated as the
weighting parameter β = 1 and β = 2, respectively. The
F1−Score refers to the harmonic average of precision and
sensitivity metrics. On the other hand, F2−Score emphasizes
the sensitivity metric with a higher β value. Consequently,
the objective of the detection phase is to maximize sensitivity
with a preferable specificity to avoid missing MI patients.
Moreover, F2−Score is targeted to be maximized with a
reasonable F1−Score value.

The implementation of the detection models is performed
on Python using the Tensorflow library [44] and Scikit-learn
library [45], whereas the feature engineering of the proposed
method is implemented on MATLAB version R2019a. For
the experiments, we have used a PC with Intel® i7− 8665U
CPU 32 GB system memory, and a workstation with NVidia®
GeForce RTX 2080 Ti GPU card 128 GB system memory.
In the training phase of each classifier, we have performed
a grid search over a 5-fold cross-validation scheme that is an
exhaustive search of specified parameter values for each model
in order to set the best hyperparameters for the testing phase.
Accordingly, we search the best parameters of the classifiers
as follows:

DT has searched the function of Gini impurity and entropy
for measuring the quality of a split, the maximum number of
features that are selected for the best split is defined by the
auto, log2, and square root of the number of features in the
training set, the nodes are separated by the supported strategies
that are set to random and best, and the performance of the
model is evaluated on the test set by checking the scoring of
each standard performance metrics.

RF classifier has bootstrap parameter set to false and true
that indicates the data usage as building the trees, the class
weights are determined by balanced and balanced subsample
mode, the quality of splits are measured by Gini impurity and
entropy functions, the maximum number of features that are
selected for the best split is defined by the auto, log2, and
the square root of the number of features in the training set,
the warm start parameter is set to false and true, the number
of trees in the forest is searched in [5, 50] with a gap of 5
increasing at each step and the performance on the test set
is evaluated by checking the scoring of each performance
metrics.

SVM classifier has radial basis function (rbf) and linear
kernel functions with the regularization parameter searched in
[1, 1000] with a gap of ×10 increasing at each step. The kernel
coefficients are determined in [10−1, 10−6] with a decrease of
10−1 at each step and the scoring parameters for the testing
phase are searched over each performance metric.

k-NN decides the best algorithm for computing the nearest
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TABLE III: Average MI detection performance results (%) computed from 5-folds in single-view echocardiography.

MI Ratios Model Sensitivity Specificity Precision F1−Score F2−Score Accuracy
A

4C 61.54%

DT 82.93 68.00 80.95 82.93 84.16 78.46
RF 86.25 84.00 89.61 87.90 86.90 85.38

SVM 82.50 70.00 81.48 81.99 82.29 77.69
k-NN 88.75 78.00 86.59 87.65 88.31 84.62

1D-CNN 83.75 78.00 85.90 84.81 84.17 81.54
APs [34] 86.25 77.08 86.25 86.25 86.25 82.81

A
2C 52.30%

DT 67.65 58.06 63.89 65.71 66.86 63.08
RF 66.18 77.42 76.27 70.87 67.98 71.54

SVM 76.47 66.13 71.23 73.76 75.36 71.54
k-NN 72.06 77.42 77.78 74.81 73.13 74.62

1D-CNN 64.71 75.81 74.58 69.29 66.47 70.00
APs [34] 69.12 59.68 65.28 67.14 68.31 64.62

neighbors automatically or with brute-search, BallTree, and
KDTree algorithms by weighting each neighborhood uniformly
and inverse of their distance. The number of neighbors is
determined in [5, 30] with a gap of 5 increasing at each step,
the metric used for computing the distances between neighbors
are Manhattan and Euclidean, and the scoring parameters are
selected as the performance metric with the highest scoring
value.

1D-CNN is trained by Adam optimization algorithm [46]
along with categorical cross-entropy loss function with a
learning rate of [10−1, 10−7] decreasing at each step by 10−1.
The filter sizes of [4, 8, 12, 16, 24, 32] and the kernel sizes
of [3, 5, 7, 9, 11, 13, 15] are searched to train the model with
[25, 50, 75, 100] epochs by setting the scoring parameter to
performance metric with the highest value.

C. Results

In Fig. 9, some examples of the APs formation can be
depicted. The figure reveals that the APs can successfully
represent the true endocardial boundary even for low quality
A4C and A2C views. Accordingly, we shall detail single- and
multi-view MI detection performances next.

1) Single-view Echocardiography: We present the perfor-
mance of each classifier in single-view (A4C or A2C view)
echocardiography, individually. The MI detection results are
presented in Table III. In A4C view echocardiography, the
prior approach with the threshold-based APs method [34]
achieves 86.25% sensitivity with a specificity level of 77.08%.
The results indicate that imposing ML into the algorithm
generally outperforms the threshold-based APs method in [34]
by the classifiers utilized in this study. In the A4C view, the k-
NN classifier achieves the highest sensitivity level of 88.75%,
whereas the highest specificity of 84% is obtained by the RF
classifier.

The performance of prior work in [34] for A2C view
echocardiography is 69.12% sensitivity with 59.68% speci-
ficity. Once again, it was generally outperformed by the
proposed approach with the evaluated classifiers. The SVM
classifier achieved the highest sensitivity level of 76.47%,

whereas the highest F1−Score is obtained by the k-NN
classifier with 74.81% in A2C view echocardiography.

2) Multi-view Echocardiography: In multi-view echocar-
diography, we merge the single-view information by concate-
nating the features as F =

[
Φ1

T Φ2
T] ∈ R1×12. Alterna-

tively, we utilize both of the single-view echocardiography
results to detect MI in multi-view echocardiography by simply
merging the A4C and A2C view detection results with the
”OR” operator as a straight-forward solution. Accordingly, if
either of the single-view detection outcomes is MI, the multi-
view detection outcome will also be MI.

In Table IV, the MI detection performances for multi-view
echocardiography are presented. The results indicate that the
proposed approach that concatenates the single-view features

Fig. 9: A4C and A2C view frames for the endocardial bound-
ary extraction process by the APs method. The sample images
at the first row are subjected to artifacts, noise, or low contrast.
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TABLE IV: Average MI detection performance results (%) computed from 5-folds in multi-view echocardiography, where the
symbol ? indicates the concatenated features.

Echocardiography
View Model Sensitivity Specificity Precision F1−Score F2−Score Accuracy

Multi-view?

DT 84.09 64.29 83.15 83.62 83.90 77.69
RF 87.50 61.90 82.80 85.08 86.52 79.23

SVM 90.91 42.86 76.92 83.33 87.72 75.38
k-NN 86.36 59.52 81.72 83.98 85.39 77.69

1D-CNN 76.14 73.81 85.90 80.72 77.91 75.38

Multi-view

DT 90.91 45.24 77.67 83.77 87.91 76.15
RF 86.36 71.43 86.36 86.36 86.36 81.54

SVM 88.64 47.62 78.00 82.98 86.28 75.38
k-NN 89.77 64.29 84.04 86.81 88.57 81.54

1D-CNN 84.19 64.29 83.15 83.62 83.90 77.69

TABLE V: The confusion matrices of MI detection in multi-
view echocardiography by the RF model, where the symbol ?

indicates the concatenated features.

(a) Multi-view?

Multi-view? Predicted
non-MI MI

Ground
Truth

non-MI 26 16
MI 11 77

(b) Multi-view

Multi-view Predicted
non-MI MI

Ground
Truth

non-MI 30 12
MI 12 76

has proximate performance compared to the alternative solu-
tion in multi-view MI detection. Accordingly, the proposed
multi-view approach with the SVM classifier achieves an

Fig. 10: The F1−Scores of the ML classifiers are plotted for
single-view (A4C and A2C) and multi-view (the proposed
feature concatenation) echocardiography.

elegant sensitivity level of 90.91%. On the other hand, the
alternative approach with the RF classifier has the highest
precision by 86.36%. Accordingly, the confusion matrices of
the RF model in multi-view echocardiography are shown in
Table V, where both solutions are compared. The F1−Score
performance metrics of each ML classifier is plotted in Fig.
10 for single-view (A4C and A2C) and multi-view echocar-
diography.

D. Computational complexity

The computational complexity of the proposed multi-view
MI detection method is the total computational complexity
that arises from each individual block depicted in Fig. 2.
The endocardial boundary extraction, myocardial segment
displacement, and feature engineering blocks of the method are
from the prior work, where their computational complexities
are detailed in [34]. However, the time elapsed for executing
the algorithm is doubled since both A4C and A2C views are
used in this study. On the other hand, the MI detection stage
has a computational complexity that differs with respect to
the utilized classifiers. Accordingly, the classifiers have the
computational complexities in the prediction phase as follows:
DT as O(V ), RF as O(V ntree), SVM as O(V nsv), and k-NN
as O(V ntrain), where the length of the feature vector, number
of trees, number of support vectors, and number of training
samples are denoted as V , ntree, nsv , and ntrain, respectively.
Furthermore, the convolutional layer computations of 1D-CNN
are as follows:

C =

L∑
l=1

N(l−1)NlV(l−1)K
2
(l−1)+

L−1∑
l=0

N(l+1)Nl(Kl + Vl)K
2
l +

L−1∑
l=0

N(l+1)NlKl(Kl + Vl)
2,

(11)

where C in Eq. (11) is the multiplication operations of L
number of layers at each back propagation iteration, N number
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TABLE VI: The average time elapsed for executing the
algorithm stages in multi-view echocardiography.

Algorithm Stage Proposed Methods Elapsed Time (s)
Endocardial Boundary

Extraction APs 59.0696

Myocardial Segment
Displacement

Maximum
Displacements 0.0712

Feature
Engineering

Scaled
Displacements 0.0120

MI Detection

DT 3.023× 10−6

RF 5.250× 10−5

SVM 7.592× 10−6

k-NN 3.725× 10−5

1D-CNN 2.665× 10−3

of connections between layers, and K sized filter. Thus, 1D-
CNN has the time complexity O(C).

Table VI shows the average time elapsed in seconds (s)
during the inference of each step of the proposed algorithm
in multi-view echocardiography that is illustrated in Fig. 2.
Accordingly, the most time-consuming stage arises from APs,
where around 60 seconds have passed for its execution. On the
other hand, the fastest block of the algorithm is MI detection
with real-time execution. Overall, the proposed algorithm
requires 61.0318 seconds on average to process A4C and
A2C echocardiography views with one-cardiac cycle each
(≈ 30− 50 frames in total).

IV. CONCLUSIONS

The early detection of MI is a crucial task to prevent further
tissue damages or even death. In this study, we propose to
detect MI over multi-view echocardiography by merging the
information extracted from A4C and A2C views. Contrary
to the recent studies proposed for single-view, this is the
first study that accomplishes a multi-view MI detection for
a reliable and robust diagnosis. Moreover, this study shows
that the threshold-based APs method in [34] can significantly
be improved by using an ML-based approach even for single-
view MI detection. The experimental results show that the
detection performance has increased with the proposed ap-
proach in single-view echocardiography by 2.50% and 7.35%
for the sensitivity metric in A4C and A2C views, respectively.
Furthermore, in multi-view echocardiography, the proposed
approach has achieved a sensitivity level of 90.91% and an
F2−Score of 87.72%.

The proposed method can be clinically used as an assistive
tool to help cardiologists and technicians to prevent subjective
and operator-dependent assessments by accurately measuring
the LV myocardial displacements and plotting the color-coded
myocardial segments. Finally, another major contribution of
this study is the formation of the multi-view HMC-QU dataset
that is publicly shared with the research community. We plan
to extend our approach to other views in order to detect MI
due to the blockage of any coronary artery. With this accom-
plishment, we will be able to identify the blocked arteries and
also predict the location of the blockage simultaneously for
the benefit of localizing the revascularization targets.
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